Michael A. Rincon V.: Optimal extensions of Holsztyński theorem for $C_{0}(K, X)$ spaces

Data: segunda-feira, 4 de novembro de 2013, às 14h

Sala: 267-A

Palestrante: Michael A. Rincon V., IME-USP

Título: Optimal extensions of Holsztyński theorem for $C_0(K, X)$ spaces

Jesús M. F. Castillo: A few problems on twisted Hilbert spaces

Data: segunda-feira, 21 de outubro de 2013, às 14h

Sala: 267-A

Palestrante: Jesús M. F. Castillo, Universidad de Extremadura

Título: A few problems on twisted Hilbert spaces

Resumo: A Banach space is called a twisted Hilbert space if there is an exact sequence
$$0\longrightarrow \ell_2 \longrightarrow X \longrightarrow \ell_2 \longrightarrow 0$$ 
which exactly means that $X$ admits a subspace isomorphic to $\ell_2$ such that the corresponding quotient $X/\ell_2$ is isomorphic to $\ell_2$. Of course, one is interested in nontrivial twistings; i.e., that $X$ is not a Hilbert space. Here is a sampler of open problems involving twisted Hilbert spaces we could well consider during the talk: 
  1. Do nontrivial twisted Hilbert spaces exist? (a question non posed by Palais). How can one construct them? 
  2. Can they be twisted? (an old question of David Yost) i.e., Do nontrivial twisted twisted Hilbert spaces exist? 
  3. Rochberg constructions [Higher order estimates in complex interpolation theory, Pacific J. Math. 174 (1996) 247--267.] provide natural and simple representations for twisted-twisted-$\cdots$-twisted Hilbert spaces. 
  4. The most natural example of which is the so-called Kalton-Peck $Z_2$-space and its associated exact sequence $$0 \longrightarrow \ell_2 \longrightarrow Z_2 \longrightarrow \ell_2 \longrightarrow 0.$$ Both the space $Z_2$ and the sequence are singular objects in many senses. For instance, $Z_2$ is the only natural candidate to Banach space not isomorphic to its hyperplanes. 
  5. Homological tensorization and Kalton [The basic sequence problem, Studia Math. 116 (1995) 167--187] (quasi-Banach) version of the Gowers-Maurey space [Banach spaces with small spaces of operators, Math. Ann. 307 (1997) 543--568] suggest that awesomer monsters are in stock. 
  6. There is a connection between the problem of twisting Hilbert spaces and the problem of extending bilinear forms. 
  7. In turn, the right context for such study is homological algebra. Unfortunately, the problem at the horizon (somehow a twisted reading of Palamodov [Homological methods in the theory of locally convex spaces, Uspehi Mat. Nauk 26 (1971), n. 1 (157), 3--65]) Problem. Is $Ext^2(\ell_2, \ell_2)=0$? is entirely off limits. 
  8. Even using Kalton extrapolation theorem [Differentials of complex interpolation processes for Köthe function spaces, Trans. Amer. Math. Soc. 333 (1992) 479--529]?

Jesús M. F. Castillo: A few problems on twisted $C(K)$-spaces

Data: segunda-feira, 14 de outubro de 2013, às 14h

Sala: 267-A

Palestrante: Jesús M. F. Castillo, Universidad de Extremadura

Título: A few problems on twisted $C(K)$-spaces

Resumo: A Banach space X is called a twisted-$C(K)$ if there are two Banach spaces of continuous functions on some compact spaces, say $C(S)$ and $C(T)$, forming an exact sequence
$$0 \longrightarrow C(S) \longrightarrow X \longrightarrow C(T) \longrightarrow 0$$
which exactly means that $X$ admits a subspace isomorphic to $C(S)$ such that the corresponding
quotient $X/C(S)$ is isomorphic to $C(T)$. Of course, one is interested in nontrivial twistings; i.e.,
that $X$ is not $C(S) \oplus C(T)$. Here is a sampler of open problems involving twisted sums of $C(K)$-
spaces we could well consider during the talk:

  1. Given a nontrivial twisting $X$ of $C(S)$ and $C(K)$, it is not known a way to "paste" $S$ and $T$
    in a compact $K(S, T)$ so that $X$ becomes isomorphic to $C(K(S, T))$. When possible.
  2. It is not known if for every nonmetrizable compact $K$, there is a (nontrivial) representation $C(K) \simeq X/c_0$.
  3. If $\mathbb{N}^*$ denotes the compact space $\beta \mathbb{N} \setminus \mathbb{N}$, every twisting of $C(\mathbb{N}^*)$ is trivial [Avilés, Cabello, Castillo, González, Moreno, On separably injective Banach spaces. Adv. in Math. 234 (2013) 192-216]. It is not known which other $C(K)$ enjoy the same property, apart from $c_0$ or the injective spaces.
  4. The local versions of $C(K)$ spaces are the so-called $\mathcal L_\infty$-spaces. The twisting of $\mathcal L_\infty$-spaces conceals many surprises.
  5. The uniform classification of (twisted) $\mathcal L_\infty$-spaces is a tough topic. Aharoni and Lindenstrauss [Uniform equivalence between Banach spaces. Bull. Am. Math. Soc. 84 (1978) 281-283] gave an example of two non-isomorphic non-separable $\mathcal L_\infty$-spaces which are uniformly homeomorphic. It is possible to give a separable example, which solves a question in the next mentioned paper of Johnson, Lindenstrauss and Schechtman. 
  6. A $C(K)$ space is uniformly homeomorphic to $c_0$ if and only if it is isomorphic to $c_0$ [Johnson, Lindenstrauss, Schechtman, Banach spaces determined by their uniform structures. Geom. Funct. Anal. 6, (1996) 430-470]. It is not known if "the same" occurs to twisted $C(K)$-spaces.
  7. $C[0, 1]$ and the Gurarii space are essentially different $\mathcal L_\infty$-spaces, in the sense that they have no common ultrapowers [Avilés, Cabello, Castillo, González, Moreno, On ultra-products of Banach space of type $\mathcal L_\infty$. Fundamenta Math. (to appear)]. It is not known how many "essentially different" $\mathcal L_\infty$-spaces are there, which is known as the Henson-Moore classification problem [Nonstandard hulls of the classical Banach spaces. Duke Math. J. 41 (1974) 277.284.]

Pierluigi Benevieri: O problema da aproximação de mapas compactas em espaços de Banach e aplicações ao grau topológico

Data: segunda-feira, 7 de outubro de 2013, às 14h

Sala: 267-A

Palestrante: Pierluigi Benevieri, IME-USP

Título: O problema da aproximação de mapas compactas em espaços de Banach e aplicações ao grau topológico

Resumo: Pelo que se sabe, não existe um resultado geral de aproximação de mapas completamente contínuas entre espaços de Banach por mapas $C^1$, se estamos em dimensão infinita. Sabemos muito bem que uma função real contínua, definida em um subconjunto compacto de $R^n$ pode ser aproximada, na norma sup, por uma mapa suave definida em tudo $R^n$. Um resultado análogo não existe (pelo que se sabe) se $R^n$ é substituido por um espaço de Banach $E$ de dimensão infinita, a menos que o domínio (compacto) da mapa seja contido em um subespaço de dimensão finita de $E$.

De fato, podemos provar que um resultado de aproximação existe também no caso em que o domínio da mapa é contido em uma subvariedade de dimensão finita de $E$.

Este fato permite provar resultados da teoria do grau topológico em dimensão infinita.